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ABNTRALT

The flow and heat transfer in a rectangular enciosure with different heater and cooler
sizes, heater location and aspect ratio were studied numerically. Two dimensional mathematical
model was developed based on solving the parital differential equations for the conservation of
mass, momentun, and energy. A laminar flow is to be considered in the present model. Finite
element technique was wifized for the model formufation. The heating element was an
isothermal strip located in one, otherwise insulated vertical wall. In the opposing vertical wall,
the isothermal cooling element was fitted and the rest of the wall was kept insulaled and the
upper and lower surfaces were insulated. Computations were carried out at Pr=0.7, Ra = 107,
A complete range of cooler and heater sizes and heater lacation was studied. The computed
mode] results were verified through the comparison with those available in the literature, The
computed rates of heat transfer and flow field provide a guidance for locating the heater and
cooler. New correlations refating Nusselt number to the disensionless size of heater and cooler
and aspect ratio were obtained.

L INTRODUCTION

Natural convection in enclosures has received increasing attention in recent years. This
attention 15 due to the wide range of applications in which natural convection plays an
imporiant role. Such applications are solar collectors, building air conditioning, insulation with
double pane windows, cooling of electronic equipment, crystal growth, nuclear reactor design
and furnace design. Natural convection problems also have been a subject of interest for the
studies whose objective was to develop numerical methods for the solution of the partial
differential equations. Problems involving natural convection can broadly be divided into twao
categories: Enclosures heated from side and enclosures heated form below [ 1.

Matural convection in enclesures is a complex - phenomenon. For a confined natural
convection, a boundary layer forms near the walls. The region exterior to it {orms a circulating
core. Since the core region is encircied by the boundary laver. the boundary layer can not be
considered to be independent of the core. Therelore, the boundary layer and the core are
closely coupled 1o each other. This coupling constitutes the main difticulty in ebtaining the
analytic solutions.  Hence internal natural convection phenomena are most investigated either
by numerical or experimental technique,

Novak and Nowak {2] analvzed numerically the natural convection i a rectangular
enclosure to investigate the eflect of the distance between the vertical walls on the heat transfer
Fate. As a restlt of their study, they proposed an optimum gap width for doubice pane windows.
Vertical cavities with isothermal vertical walls have also been studied by Eckert and Carlson
{3], Tabarrok and Lin {4] and Korpela et al [ 5] Malural convection in a differentially heated
corner region has been studied by November amd Nansteel [6]. Such circumstances are found
when the solar radiation passing through a larze window is incidem on the floer which receives
the radiation and attains a temperalure relatively greater than that of the cold window surfaces.
Ozoc et al [7] studied cxperimentally the eflect of the inclination angle en the rate of heat
transfer in a rectangular enclosure heated from befow and cooled from above. Their study was
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catried out for different aspect ratios. Sernas and Lee {8} investigated inlerferometrically the
heat transfer rates inside rectangular air enclosures of different aspect ratios less than one
(shallow cavities). The enclosures were composed of isothermal vertical walls and the top and
the hottom wall were either isothermal or insulated with low thermal conductivity polyurethane
o rubber. Also, the problem of shallow cavities was modeled by Bejan and Tien [9].
Merker and Leal [$0] who considered the problem of natural conveclion in a shallow ansular
tavity with differentially heated inner and outer walls.

In most of the studies published in literature, the whole vertical wail was considered to
be isothermal or the whole wall was exposed to a constant heat flux. However, in many
cngineering applications, heating and or cooling takes place OVera marrow segment of the
vertical walls. In such cases, the size and location of the heater and cooler plays an important
role on the fluid flow and heat transfer mechanisms. Hence, optimum heater and cooler size
and their locations should be determined for better utilization of such system. Chu et al [H1]
studied the effect of the heater size and location on the rate of heat transfur. In their study onc
of the vertical walls was partially heated while the whole opposite vertical wall was kept at

lower temperature. Also, Yucel and Turkoglu [12] studied numerically the effect of heater and -

cooler size on the flow and heat transfer in a square enclosure. Their treatmen of the velocity-

pressure coupling is based on SIMPLE algorithm. Their results showed that the effect of

heater size is not in agreement with those of [11]. None of the previous studies provided
enpineers and designers with precise correlations for the heater and cooler size effect on the
het transfer rate. So, the present work is carried out to achieve this purpose.

In the present study, a square enclosure was considered to study the flow and heat
transfer in natural convection problem. An isothermal heating element was located on the left
vertical wall and an isothermal cooliny element was placed on the right vertical wall. Top and
bottom walls were assumed to be insulated. The effect of both heater and cooler sizes on the
flow field and heat transfir rate were investigated. Also, the effects of the heater location and
the aspect ratio were analyzed.

2. MATHEMATICAL FORMULATION

The proposed system is a reclangulas enclosure of geometry and coordinates system as
shown in Fig. {1). The height of enclosure is denoted by H, and the width by L. The enclosure
is heated partially from the left side with a heater length Iy stasting fram e bottom, where s
cemterline is located at a distance D from the bottom of the enclosure. Also the enclosure is
cooled partially from the right side with a cooler length of e starting from the top. The
dihensions of the enclosure, heater and cooler normal to the plane of the disgram, are assumed
to be long. Hence, the problem can be considered as a two dimensional prablem. At timet = 0,
constant but different temperatures are suddenly imposed on both the heating and cooling
vertical elements and maintained until steady state conditions are reached. The steady stale
cquations of the fluid motion are writlen as:
Mrasy conservation
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By eliminating the pressure between the two momenium equations {2-a} and (2-b} and
introducing the definitions of vorticity and stream function as in the following equations:

0= (-(:\—}—E:EJ {4)
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Using suitable refererice values for lenath, velocity, stream function, and vorticity the
dimensionless temperature, vorticity and stream function that govern the natural convection

problem can be written in normatized {E-n1) plane as foliows:
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a-fritiol Conditions:

at 1> 0.0=E31.0,0sny 210  GOEN=8,=0.35 (average between 1.0,0.0) {9-a)
QE.n) =00 (9-b)
w(E.n)= 0.0 {9-c)

B~ Bonndary Connditions:

1- Temperature boundary conditions

AE=0. 0£n < (h/H) =0, =10 (10-a)
alt=0. (/) <ns 10 =00 (10-b)
24
AE=10, 0sn < (-1 /H) =00 {10-¢)

34
E=10 (I-l/H) < n < 10 ©=0, =00 {10-d)
atn=0and =10 0<E <10 if—l“—'(}.U (10-e)
on

2- Stresm function boundary conditions
At the solid wall boundaries the values of velocity components v and v are zero! so
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The above two equations mean that the solid wall has a constant value of the stream function
which is usually assigned a zero value, so the stream function an the solid buundaries is,
Y= 0.0 (12)
3- Vorticity boundary conditions
Since the definition of the voricity can be given by Eq. (8). the no slip boundary

comchtion becomes,

d

{dn)’
Fquation (13) can he approximated by using finite difference formualas and expressing i in
terms of dimensioniess variables as follows:

W = (13}
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where; w refers to the nodal value at the no siip wall.
wt+1  refers to the adjacent interior node.
AN is the dimensionless distance separating this node pair,

Equations (6}, (7} and (8) are solved with the refevant boundary conditions given by
Egs. {10}, (12) and (14) to determine the temperatur, vorticity and siream functicn
distributions. The local Nusselt number is calculated from the temperature distribution as:

Nu. ;_i[fij (15)
} ATV

Form the local Nusselt number, the average Nusselt number can be calculated by:

x 0t
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Nu = Lkal).dy (16)
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NUMERICAL SOLUTION AND FINITE FLEMENT FORMULATION

The system of equations (6), (7)and (8) forms a sel of guasilinear elliptic equations.
So, the solutions of the system of equations for ¥, £ and & will be continuaus in the domain.
Hence, the system of equalions was solved in the following iterative procedure. Initially the
stream function is assumed 1o have a zero value every where and Eq. (6) is then solved as a
lincar equation for ©. This schition describes the temperature distribution for the pure
conduction case, This temperature distribition and the associated stream function field are then
substituted into Eq. (7) from which € is obtained. Finally the obtained votricity distribution is
used in Eq. (8) and an improved value of ' is obtained. The cycle of iteration is repeated until
the values of ¥ lor two conseeative caleulations are within 4 (.02%.

The system of equations is solved using the Galerkin based {inite element methaod
[13.14,15]. The objective of the finite element is to reduce the system of governing equations
inlo u discretized set of alpebric equations. The procedure begins with the division of the

conlinuum region of interest into a number of simply shaped regions called clements,




The Finite Element Forniulartion

The temperature, vorticity and the stream fuaction in an element as shown in Fig. (2)
can be represented in terms of nodal temperature, vorticity and stream function respectively by
simple polynomials:
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The interpolation functions {M;, N2, N,] in Eqs. (18) are derived from an assumption
of linear variation of temperature, vorticity and stream function in the element. The
approximate expressions of  the system variables are substituted into the governing equatians
{6)-{8) and the global errors are minimized using the above interpolation functions N; (i =1,
2, 3) as weighting functions. The solution of Egs. (&), {7) and (8) that satisfies the boundary
conditions given by Eqs. (10), (12) and {14}, car be written after weighted integration over

the domain G* and the application of Green’s theorem, in the equivalent matrix form as:

[(Ki] 1O} = {F;) {19-n)
(K] 182) = [F.) (19-b)
[K:] W} = IF;) (19-¢)

where,
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whure;
£+ total number of elements. G bounded domain, T domain hourdary,
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Similarly, [K.], [Ksl [Fajand [Fa) canbe written in the same manner. Equations (19a-c) give
three  sets of linear equations which have been solved by Gauss glimination method. The fnite
clement formulation and the resulling linear equations were solved through  a computer
program written here in FORTRAN code. :

4 MODEL VALIDATION _

To check the consistency and reliability of the present analysis, the same conditions.
employed by Eckert and Carlson [16] was used in the predictions. Figure (3) shows the
abtuined results compared with experimental results of fekert and Carlson. The maximur
deviation of the present predictions as can be seen is within 8 %, The average Musselt number
is correlated by a formula of the form of  (Nu = a Gr') for air as & working fluid. The
numerical predictions of Herkovesky & Polevikov [18] and Balaji and Venkateshan [19]
carricd out at Eckert and Carlson condition are also plotted in Fig. {3) as can be seen; the'
agreement between the present predictions and them is fair, Table {1} shows the value of a and
b pertaining to the studies in Figure (3). ' '

Table 1* Values of 2 and b from studies indicated in Fig. (3):

Source a

Eckert & Carlson {16] 2119 (.30

Han [§7] 0.0782 0359
Berkovsky & Polevikov [18] 015 029

Balaji & Venkateshan [19] 0.13 0.305
Present work 0.154 0278 N

3- RESULTS AND DISCUSSIC NS

All the results presented in this paper are for Pr= 0.7. The etfect of heater and cooler
sizes. heater location and aspect ratio on the flow and heat transfer characteristics are
demonstrated. These compmmions were carried out for different Rayleigh numbers. Either
heating or cooling was from vertical sides, while the top and hottom surfaces were insulated.

3.1 Effect of Partial Heating sud Coolug

To investigate the ellect of heater size on the flow and heat transfer, the cooler size is
kept constant and the heater  size was varted to take values of hyH =025 0.5 0.75 and 1.0
respectively. The heating element was starting from the bottom of the left side and the cooling
element was starting from the top ol the right side. For the case of dimensionless cooler size,
/11 = 1.0, the stream lins, isovorticily lines and isotherms for Ra = 2x 10° are illustrated in
Figs (4)-(6) respectively. From these figures, it is noticed  that the density of isotherms is
hightr  near the heater, hence higher heat transfer rate is achicved. Also, the isovarticity fines
core is directed towards the heater where the shape of sireantlines does not greatly changed by
the heater size.

To analyze the effects of the cooler size on the flow and heat transfer, computations
were performed by taking the healer size constant and varying the cooler size |- /H to take
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values of 0.25 0.5, 0.75 and 1.0 respectively. For the case of Li/H=1.0, stream lines,
isavorticity lines and isotherms are shown in Figs. (7)-{9).

The variation of the average Nusselt number with heater and cooler size is illustrated in
Figs.(10a-d) for different Rayleigh numbers. These figures show that the average Nusselt
number increases with the increase of the cooler size. Also, from the figures it is shown that
the average Nusselt ndmber increases with the decrease of the heater size. The effect of the
codler size on the rate of heéat transfer for different Rayleigh numbers for 2 dimensionless
heater size /M = 05 is depicted in Figg. (11). From the figure! it is noticed that the average
Nusseli number increases with the increase of cooler size and Rayleigh number. From the
present predictions in Figs. (10) and (11), the average Musselt number can be given asa
function of heater and cooler size for different Rayleigh numbers by:

Nu = 0192 Ra"? (yHY" T (e/H)™ 10" 2 Ra 2 2x10° oy

From the above correlation, it is concluded that the average MNusselt number increases with the
“imerease of the eooler size, Rayleigh number and with the decrease of the heater size

3.2 Nffect of Eavleiel Number
"The efféct of Rayleigh number on the fluid flow and heat transfer characteristics is
shown in Figs, (12-14). These figures illustrate the stream function, vorticity and temperature

‘contours for different values of Rayleigh number and for complete heater and cooler size.

From these figures, it is noticed that as Rayleigh number increases the stream function and

' vnmc:ty increases, Also,’ ‘multi-vorticity cells and more thermal stratification are observed for

higher Rayleigh numbers,

Locetion
The dependence of the average Nusselt number on the heater location for a heater size
_!;;."H of O 2 in a square enciasure for different Ravieigh mimbers is illustrated in Figure (15). It
is noticed that the average Nusselt number has a maximum value when the heater is tocated o
the bottom of the enclosure and then ciecuast.s slu.ht[y upta heater location D/H =0.4 and 1(

dret’eaé': sharply to reach a mmwmm value at a healer location D/H=0.9. So, it can be

_canchid 4d that the heater locatlon for high heat transfer rate shifts toward the bottom of the

enclosure and the heater location D/’H lnvmg a \"llue of a%iout (1.4 was the limit for high rate of
heat  transfer.in this study, where ‘the hot air layer can traw_l upward and enhanm the

C{mvec:mn mrcuhlmn

) ffﬂf uf A wvueru

=2
7
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“The effect of aspect ratio has been investigated fora range fram 0.1 1o 3.0. Figure (10),
shows the variation of the average Nusselt number with the aspect ratio for differem Rayleigh
numbers. 1t is noticed from the figure that the average Nusselt number increases rapidly with

the increase of the aspect ratio till il becomes unity and then the rate of increase in the average

Nusselt number is small with the increase of the aspect ratio above umly

CONCLUSIONS

view of what has been Introduced the following conclusions can be drawn;

A two dimensionat numerical model is devised 10 simulate the flow and heat transfer in natural
convection problems in enclosures with partially or completely heafing from one ﬂule and
partially or completely cooling fram the opposite side.
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2- A new correlation relating  Nusselt number with Rayleigh number, heater and cooler size is
obtuined. _

3- For the side neating conditinn, the average Nusselt number increases with the increase with the
aspect ratio in the range wsed in this work,

4- For a dimensionless heater size h/H= 0.2 and dimensionless cooler size i/ =10, the average
Nusselt number s found to have a maximum value at the bottom location and minimum value
al the top location and the dimensionless heater location (1)/H) having a vilue of 0.4 was the
limit of high heat transfer rate.
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NOMENCEATURE

nodes in the narmal direction to

ay. by, ¢ coefficient in Egs. (18) v velocity component in
A element area y-direction
. A, aspect ratio; H/L v dimensionless velocity
: ? c specific heat component in y-direction; v/U,
'i. D heater center location apart X horizontal axis
} from the x-axis y vertical axis
. dn distance between two adjacent

CGrreek leiters

the wall boundary e thermal diffusivity
E total number of elements f coeflicient of thermal expansion
¥y},  force vectors given by &} dimensionless temperature;
{F.b,.. Egs (19) (T-Te) (T Te)
g gravitational acceleration ' boundary
G domain p  density
Gr Grashof number gBATH)NV? w  vorticity
H height of the cavity g  dimensionless horizontal axis; %/
k thermal conductivity 11 dimensionless vertical axis; y/H
[K].  stiffness matrix given by t  dimensionless time; oit/H
[Kol,... Egs.(19) v kinematic viscosity
L length of the cavity AN dimensionless distance between

I, hs ceoler and heater length
N, Ma, .. interpolation finction
Nu average Nusselt number
Nu, local Nusselt number
p pressure
Pr Prandtl number (v/o)
Ra Rayleigh number (gBATH v o
Ra,  Rayleigh number (gBATL v o
t time
T temperature
velocily component in
x-direction

twa adjacent nodes in the normal

direction to the wall boundary
AT  iemperature difference, Ty -Te
¥ dimensionless stream function; y/o
0 _dimensionless vorticity; e/,
Superscripts

e  element level
T  transpose

— average value
Subscripts

u dimensionless velocity ¢ cooler, cold
component in x-direction; w/U, H  heater, hot
U, reference velocity; a/H m =121

0 reference
w o owall
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Fig. (11) Variation of the aversge Nusselt number
with the cooler size and Rayleigh number
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Fig. (12.a-c) Streamline, vorticity and isothermal contours
(Ra = 2x10%, 1g/H = 1.00 , Io/H=1.0)
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' Fig. (13.a-c) Sireamline, vorticity and isothermal contours
(Ra = 10%, Ip/H = 1.00 , Io/H=1.0)
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Fig. {14.2-¢) Streamline, vorticity and isothermal contours
(Ra = 10°% 1)/H = 100, Ic/H=1.0)
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Fig. (15) Variation of the average Nusselt number with the
heater lecation for different Rayleigh numbers -
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Fig. (16) Variation of the average Nusselt number with
the aspect ratio for different Rayleigh numbers




